DR. HOUSSEIN ELTURKEY

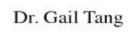
UNIVERSITY OF NEW HAVEN

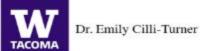
MATH TEACHING SEMINAR- UNIVERSITY OF CONNECTICUT

APRIL 13TH, 2018

EXPLORING INTERSECTIONS OF INQUIRY, EQUITY, AND CREATIVITY

CREATIVITY RESEARCH GROUP





Dr. Mohamed Omar

SETTING INFORMATION

- Introduction-to-proof course
- Small university (~5,000 undergrad and grad students) in southwest US
- Hispanic-Serving Institution (HSI)
- Instructor (Tang) is a researcher in the group

STUDENT DEMOGRAPHICS

7 females	5 Latinas	4 math majors	3 traditional-aged	3 first-generation	Junior
					Junior
					Junior
			1 unknown		Freshman
		1 biology (degree completed)	l adult learner	1 first-generation	University Staff
	2 White	1 economics (math minor)	1 traditional-aged transfer	1 first-generation	Junior
		1 math major	1 adult learner transfer	I first-generation	Junior
7 males	3 Latinos	2 math majors	2 traditional-aged	2 first-generation	Freshman
			_	_	Sophomore
		1 computer engineering	1 unknown	1 unknown	1 unknown
	1 Latino and Hispanic	1 biology (math minor)	1 traditional-aged	1 first-generation	Junior
	2 White and Asian	I chemistry (math minor)	1 adult learner transfer		Junior
		1 physics (math minor)	1 unknown		Junior
	1 Asian	1 math major	1 unknown		Junior

MOTIVATION

- Vana: I feel like all of us, you know there was some strong students in the class that kept coming up, but then I saw the quieter ones also get their voice during the semester (Latina)
- Ahn Pan: Because of the nature of how the course was uh conducted, it encourages questions. It encourages um, questioning. It sounds very revolution type, you know question authority and don't take anything for granted and, you know fight back. (male, Asian/White)

MOTIVATION

Peyton: Because of the nature of this course, but when I did finally understand something, I did feel like I had a way stronger, I had much more confidence in it than I do generally and I retained the information a lot more. Like I barely even reviewed anything and I still remembered it by the end of the year. (female, White)

STUDENTS' DEFINITIONS OF IBL

Cargo: I think just having my classmates just go up and share their work and their thought process helped me like see things I, I didn't notice. Like even when I was up presenting, there was always one guy that would always just keep asking like "How did you get that?" And like, because he kept asking that, I kept like figuring out like "OK. I think I should probably put more details into my proofs so like they know like where I'm getting these things." (Latino)

STUDENTS' DEFINITIONS OF IBL

- Alice: She would assign homework and then we'd always discuss them in class...being able to have those class discussions as well as like our individual group discussions that we had in class. (Latina)
- Vana: The instructor was very, um, uh, I don't know if limited is the right word in terms of her involvement in class...[she] kind of sat at the table and more was a listener and a mediator, like a facilitator of our discussions but she never really led the discussion. So it was a lot of you know bouncing ideas off of students and um kind of evaluating each other's work in that sense. (Latina)

INQUIRY-BASED/INQUIRY-ORIENTED LEARNING

- "Deeply engage [students] in rich mathematical tasks, [give students] ample opportunities to collaborate with peers (where collaboration is defined broadly)" (Academy of Inquiry-Based Learning),
- "Enable students to learn new mathematics through engagement in genuine argumentation, ... empower learners to see themselves as capable of reinventing mathematics, and to see mathematics itself as a human activity" (Rasmussen and Kwon, 2007, p. 190).

SIX MAIN THEMES COOK, MURPHY & FUKAWA-CONNELLY (2016)

Student Ownership -- students create knowledge

Knowledge Building -- incorporating prior knowledge

Doing Math -- becoming a participant in the mathematical community

Student-Instructor Relationship -- instructors elicit student thinking

Peer Involvement -- exposure to and attempting to understand other's ideas

Student Success – better alignment to how students learn

EQUITY

- Equity teaching promotes a mindset where all students are capable of learning mathematics (e.g., Jett, 2012)
- Instructors bracket prejudices about student participation and achievement levels based on
 - race,
 - gender,
 - social class,
 - proficiency in the dominant language,
 - ethnicity (Gutiérrez, 2002),
 - and other segregating characteristics

EQUITY GUTIÉRREZ (2009)

- Access: who gets to speak, what tools do students get, what opportunities
- Achievement: grades, future plans, decisions to continue, persistence in STEM, major/minor in Math
- Identity: how the self is positioned in society (how self is raced, classes, gendered; confidence and positive math identity
- Power: distribution of power, what counts as acceptable knowledge, whose voices can be heard, empower students to be agents of change

Access

- "Equity to me is related to access by all students to opportunities to engage in rich mathematics" (Civil, 2007; p. 56)
- Inquiry invites and encourages all students' participation in doing, discussing, and presenting mathematics (Peer Involvement).
- When all students are given opportunities to be active participants in the classroom (Doing Math), students are given an additional access point to learn

- Achievement
 - Related to Student Success
 - not only in the classroom, but in future math courses and career decisions
 - Participation in IBL courses does increase student performance as well as other measures related to this definition of achievement (Laursen, Hassi, Kogan & Weston, 2014)

Identity

When students are actively engaged with each other and each other's thinking (Peer-Involvement), it can lead to a shift in mathematical identity. (Hassi & Laursen, 2015)

Power

- Opportunities to provide explanations and justifications of their thinking while others attempt to understand the ideas being discussed or presented (Peer Involvement), power shifts to the students because they decide on "what counts as acceptable knowledge" (Adiredja et al., 2015, p. 66)
- The instructor is the primary architect of the problems worked on (Laursen et al., 2011), and when the tasks assigned include problem-posing, students create and solve their own problems (*Doing Math*).

ACHIEVEMENT & STUDENT SUCCESS

Vana: I would say that [the class] impacted me or influenced me to continue on to get a complete minor in math...which was pretty important and kinda neat cause I don't know if I would've considered it before... And it made me wanna develop more of an understanding instead of just taking a class to get it over with for prereq to satisfy a prerequisite... I was able to develop a relationship with math if that makes any sense, ... and actually start enjoying it... [The class] built up my confidence and that I felt like, "yeah I can get a minor in math, why not?" and "Let's do it"

STUDENT OWNERSHIP & ACCESS

Luna: [W]ell I'm a really shy person so I don't really like talking in class and this class I was actually forced to like, get up. ... Like my group would know like, "do you understand something" ... and then I kinda wanna say no and like, "I'm actually kinda confused on this." And they would, like, taught me like "oh, you would do this" and ... we'd go up on, on the white boards and they'd let me, like, okay like try this. And like, I was able to understand it cause I was actually doing it at the same time. (Latina)

POWER & PEER INVOLVEMENT

Luna: We were kinda like the professors themselves at the same time, like we were all professors in there cause we would help each other figure out whatever it was. (Latina)

THE CONJECTURED INTERSECTION

TANG ET AL. 2017

	Access	Achievement	Identity	Power
Student-Teacher	students are given an	students' learning,	they may see students	the power dynamic in
Relationship	access point to learn	confidence, enjoyment	as mathematical	the classroom changes
When instructors are	because this helps	of mathematics, and	learners, which may	since the instructor is
enabled to have a deeper	instructors identify and	participation in class	impact how students see	concerned with student
understanding of student	address student	may be positively	themselves as	thinking and not just
thinking	concerns.	affected.	mathematical learners.	covering material.
Doing Math	there is an access	students may retain	students can reflect on	power shifts from
When all students are	point to learn since they	more content by	their own mathematical	instructor as the only
invited to participate in	are given the chance to	participating and	identities as a member of	source of knowledge to
the mathematical	do, discuss, and present	building on others'	the community.	students as producers
classroom community	mathematics.	contributions.		and users of knowledge
Student Ownership	there is an access	there may be gains in	students can reflect on	power shifts because
When all students are	point to learn because	learning, confidence,	their experiences to	students shape
encouraged to create,	they can work in a way	mathematics enjoyment,	deepen how they see	traditionally instructor-
generate, and develop	that is different from a	and class participation.	themselves as	led components (pacing
their own knowledge	prescribed manner.		mathematical learners.	and content delivery).
Knowledge-Building	instructors honor what	they add to their own	students can reflect on	power shifts since the
When all students are	students already know,	understanding, which	their mathematical	classroom is guided by
encouraged to use prior	encouraging an asset	may lead to gains in	experiences because they	what they already know
knowledge to build new	perspective instead of a	learning, confidence,	can see the progression	as opposed to what
knowledge	deficit perspective.	mathematics enjoyment,	in their construction of	instructors assume they
		and class participation.	knowledge.	know.
Peer Involvement	students are given an	students may achieve	students' perceptions	the power dynamic
When all students	access point to learn	together and carry that	of their abilities are	changes as students lead
provide justifications	because they are	style of group learning to	heightened as they	the class and ask each
while others listen and	exposed to other ways of	subsequent courses.	observe how others react	other questions, as well
attempt to understand	thinking.		to their ideas.	as asking the instructor
Student Success	and broader access to	students' career	students may identify	distribution of powe
Since IBL/IOI can lead	learning for women,	choice and course-taking	themselves as more of a	in the global society
to increased student	men, low-achieving and	patterns may be affected.	mathematician or enjoy	may change with a mor
Success Table 1: Alignment of Far	first-year students.		mathematics more.	diversified STEM force

Table 1: Alignment of Equity and Inquiry

CONCLUSION

- Our table is a first step towards seeing why inquiry (in the sense of Cook, Murphy & Fukawa-Connelly, 2016) intersects with equity (in the sense of Gutierrez, 2009)
- We do not claim that IF you teach inquiry, THEN you will have an equitable classroom

WHAT IS CREATIVITY?

- Over 100 definitions (Mann, 2006)
- A process of offering new solutions or insights that are unexpected for the student, with respect to his/her mathematics background or the problems s/he has seen before (Savic, et al., 2017)

TEACHING FOR CREATIVITY

Sririman (2005) conjectured 5 Principles to maximize creativity:

- Gestalt
 - Opportunities to engage in the four-stage creative process (Wallas, 1926; Hadamard, 1945)
 - Preparation, incubation, insight, verification
- Aesthetic
 - Teacher valuing solutions that utilize unusual proving techniques, come from diverse topics of mathematics, or make efficient or elegant solutions

FIVE PRINCIPLES (CONT.)

Free Market

 Creating a classroom environment that allows students to freely take risks, input ideas, thoughts, and solutions

Scholarly

 creating a classroom environment "in which students are encouraged to debate and question the validity of... approaches to problems..., be encouraged to generalize the problem and/or the solution, as well as pose a class of analogous problems" (p. 28)

Uncertainty

 "Students [are] exposed to the uncertainty and the difficulty of creating mathematics" (p. 28)

INQUIRY INSTRUCTION

- Academy of Inquiry-Based Learning: students
- (a) are deeply engaged in rich mathematical tasks;
- (b) have ample opportunities to collaborate with peers
- Kuster et al. (2017) describe four components of IOI:
- (I) Generating student ways of reasoning;
- (2) building on student contributions;
- (3) developing a shared understanding; and
- (4) connecting to standard mathematical language and notation.

RESEARCH QUESTIONS

What teacher actions or practices in the proof-based undergraduate classroom might foster students' perceptions of mathematical creativity?

What are some commonalities and differences between Teaching for Creativity and Inquiry Instruction?

DATA COLLECTION

- Teacher's impressions (diaries, goals, interviews)
- Teacher's instruction (Livescribe[™] data, notes)
- Students' impressions (online survey, interviews, homework, reflections)

CLASSROOM DISCUSSION

- Xiomara finished demonstrating her proof of the following theorem: "The sum of the squares of two odd integers cannot be the square of an integer."
- (A) Gail: Okay everyone look at what you did and compare to what Xiomara did... Questions? Comments?
- Peyton: Is the "two times an odd number, therefore it cannot be a perfect square", is that... is that like a rule that we can use?
- **(B)** Gail: Is it? [followed by an explanation by Xiomara]
- Peyton: Oh no, I just... I got to that point too but I just didn't know to do with it so... [chuckles]
- (C) Gail: So do you believe her argument?
- Peyton: Yeah? Yeah, I think so.

CODING GAIL'S ACTIONS

- (A) Gail: Okay everyone look at what you did and compare to what Xiomara did... Questions? Comments?
- Creativity: Scholarly and Free Market
- Inquiry: Building on student contribution (2); Developing a shared understanding (3)

CODING GAIL'S ACTIONS

- Peyton: Is the "two times an odd number, therefore it cannot be a perfect square", is that... is that like a rule that we can use?
- **(B)** Gail: Is it? [followed by an explanation by Xiomara]
- Creativity: Uncertainty and Free Market
- Inquiry: Generating student ways of reasoning (1); Building on student contributions (2)

CODING GAIL'S ACTIONS

- Peyton: Oh no, I just... I got to that point too but I just didn't know to do with it so... [chuckles]
- (C) Gail: So do you believe her argument?
- Peyton: Yeah? Yeah, I think so.
- Creativity: Scholarly
- > Inquiry: Developing a shared understanding (3)

STUDENT RESPONSES

- Carrie: "There were times like 'Well I did this proof, but I'm not sure it's right because of this' and she would respond with 'Well, what do you think class?' And the class would participate in it... And it's just, using each other and building off of each other in the class to build what we need, create, made us creative. It built that creative environment for us."
- Creativity: Uncertainty
- Inquiry: Generating student ways of reasoning (1); Developing a shared understanding (3)

STUDENT RESPONSES

- Carrie: "There were times like 'Well I did this proof, but I'm not sure it's right because of this' and she would respond with 'Well, what do you think class?' And the class would participate in it...And it's just, using each other and building off of each other in the class to build what we need, create, made us creative. It built that creative environment for us."
- Creativity: Scholarly
- Inquiry: Building on student contributions (2); Developing a shared understanding (3)

DIFFERENCES?

- Does teaching for creativity and inquiry instruction have any differences?
 - Does IBL/IOI lead to what the teacher desires?
 - How much "freedom of time and movement" does a person have (Gestalt) or uncertainty in an IBL/IOI classroom?

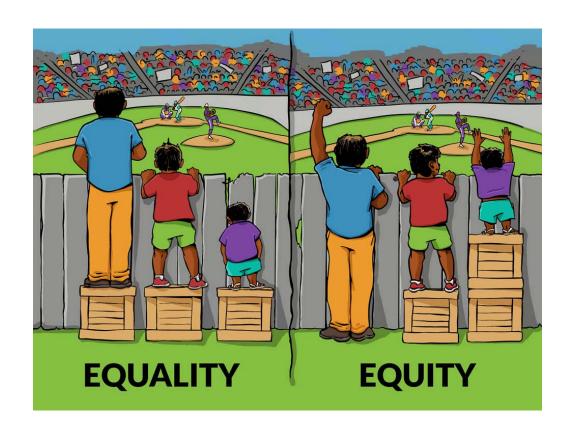
DIFFERENCES?

"And I worked on this proof like I said all semester. It appeared on our first exam and then it appeared later on in the course ... And so I went through and did it probably a hundred times. Finally I ended up proving it and when [Gail] had reviewed it, she told me that there were nine different ways to prove it and this is not one of them, but it's true and it works, and it's phenomenal. And it was very exciting. It was a creative moment. It took me months to get there but I got there and it was very exciting." - Carrie

DISCUSSION

- There are signs that using the five principles may shed light on the commonalities between Teaching for Creativity and Inquiry Instruction
 - Scholarly and components 2 and 3
 - Free market and components I and 3
 - Uncertainty and component I
 - Gestalt and aesthetic? Component 4?
- We intend to compare/contrast Teaching for Creativity and Inquiry Instruction in terms of teachers' and students' actions.

CREATIVITY AND EQUITY


- Seems slightly natural
 - When one creates and is valued for one's own process, then there can be chances to capitalize on power and identity (Gutierrez, 2009)
- Literature is quite sparse on the intersection (Luria, Sriraman, & Kaufman, 2017)
 - "People who endorse racial stereotypes have been found to be less creative... (Tadmor, Chao, Hong & Polzer, 2013). One of the many possible explanations is that endorsing stereotypes (especially potentially negative ones) may indicate a more rigid way of thinking" (pp. 1033-1034).

CONCLUSIONS?

- Our research group sees the potential for the intersection of creativity and equity, but wants to be careful with respect to how equity is researched (Bullock, 2012)
- Inquiry could be a springboard for equity (Tang et al., 2017) and creativity (El Turkey et al., 2017), but is not necessary (Omar et al., accepted)
- Any other thoughts?

EQUITY VS. EQUALITY

HELTURKEY@NEWHAVEN.EDU

MATH.NEWHAVEN.EDU/ELTURKEY

WWW.CREATIVITYRESEARCHGROUP.COM